Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

...

...

...

...

...

...

...

...

...

...

This article will guide you to run the Python script using Slurm script on the LANTA HPC system. An overview of the content can be found in the table of contents below for immediate visualization of the interesting parts.

Table of Contents
minLevel1
maxLevel7
stylenone

How to check the version of Apptainer on LANTA-HPC

  1. On LANTA-frontend-node, you can check the software that is installed in the cluster to use the command.
    $ module avail

$ module avail

------------------------- /lantafs/utils/modules/modules/all --------------------------

   ANSYS/2020.1

   ARAGORN/1.2.38-foss-2019b

   AUGUSTUS/3.3.3-foss-2019b

   Advisor/2019_update5

   Autoconf/2.69-GCCcore-8.3.0

   Autoconf/2.69-GCCcore-10.2.0

   Autoconf/2.69                                      (D)

2. If you need a specific software name to check the version. In this case, I would like to know the version of Singularity on the HPC system LANTA.
$ module avail Singularity

$ module avail singularity

------------------------- /lantafs/utils/modules/modules/all --------------------------

   Singularity/3.3.0    Singularity/3.4.2 (D)

  Where:

   D:  Default Module

Use "module spider" to find all possible modules.

Use "module keyword key1 key2 ..." to search for all possible modules matching any of

the "keys".

...

Slurm script example for running the Python script

Running on Compute node

Code Block
#!/bin/bash
#SBATCH -p compute                  # Specify partition [Compute/Memory/GPU]
#SBATCH -N 1 -c 128   			    # Specify number of nodes and processors per task
#SBATCH --ntasks-per-node=1		    # Specify tasks per node
#SBATCH -t 120:00:00                # Specify maximum time limit (hour: minute: second)
#SBATCH -A ltxxxxxx                 # Specify project name
#SBATCH -J JOBNAME                  # Specify job name

module purge				        # Unload all modules
module load Miniconda3/22.11.1-1    # Load the Miniconda3 module
conda activate tensorflow-2.6.0		# Activate your environment

python3 file.py                     # Run your program or executable code
Info

Full node: -c 128, Half node: -c 64, ¼ node: -c 32

Running on GPU node

Code Block
#!/bin/bash
#SBATCH -p gpu                      # Specify partition [Compute/Memory/GPU]
#SBATCH -N 1 -c 16   			    # Specify number of nodes and processors per task
#SBATCH --gpus-per-task=1		    # Specify number of GPU per task
#SBATCH --ntasks-per-node=4		    # Specify tasks per node
#SBATCH -t 120:00:00                # Specify maximum time limit (hour: minute: second)
#SBATCH -A ltxxxxxx               	# Specify project name
#SBATCH -J JOBNAME               	# Specify job name

module purge				        # Unload all modules
module load Miniconda3/22.11.1-1    # Load the Miniconda3 module
conda activate tensorflow-2.6.0		# Activate your environment

python3 file.py                     # Run your program or executable code
Info

1 GPU card: --ntasks-per-node=1, 2 GPU cards: --ntasks-per-node=2, 4 GPU cards: --ntasks-per-node=4

Submit a job

Use the sbatch script.sh command to submit your job to the Slurm system.

Code Block
username@lanta:~> sbatch script.sh

Related articles

Filter by label (Content by label)
cqllabel in ( "singularity" , "linux" ) and space = currentSpace ( )