This article will guide you to run the Python script using Slurm script on the LANTA HPC system. An overview of the content can be found in the table of contents below for immediate visualization of the interesting parts.
Table of Contents |
---|
Slurm script example for running the Python script
Running on Compute node
Code Block |
---|
#!/bin/bash #SBATCH -p compute # Specify partition [Compute/Memory/GPU] #SBATCH -N 1 -c 128 # Specify number of nodes and processors per task #SBATCH --ntasks-per-node=1 # Specify tasks per node #SBATCH -t 120:00:00 # Specify maximum time limit (hour: minute: second) #SBATCH -A ltxxxxxx # Specify project name #SBATCH -J JOBNAME # Specify job name module load Miniconda3/22.11.1-1 # Load the Miniconda3 module conda activate tensorflow-2.6.0 # Activate your environment python3 file.py # Run your program or executable code |
Info |
---|
Full node: -c 128, Half node: -c 64, ΒΌ node: -c 32 |
Running on GPU node
Code Block |
---|
#!/bin/bash #SBATCH -p gpu # Specify partition [Compute/Memory/GPU] #SBATCH -N 1 -c 16 # Specify number of nodes and processors per task #SBATCH --gpus-per-task=1 # Specify number of GPU per task #SBATCH --ntasks-per-node=4 # Specify tasks per node #SBATCH -t 120:00:00 # Specify maximum time limit (hour: minute: second) #SBATCH -A ltxxxxxx # Specify project name #SBATCH -J JOBNAME # Specify job name module load Miniconda3/22.11.1-1 # Load the Miniconda3 module conda activate tensorflow-2.6.0 # Activate your environment python3 file.py # Run your program or executable code |
Info |
---|
1 GPU card: --ntasks-per-node=1, 2 GPU cards: --ntasks-per-node=2, 4 GPU cards: --ntasks-per-node=4 |
Submit a job
Use the sbatch script.sh
command to submit your job to the Slurm system.
...
Note |
---|
Before you use the |
...
Related articles
Filter by label (Content by label) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
...