Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

...

Code Block
username@lanta:~> apptainer pull tensorflow-_2.3.1-gpu.sif docker://tensorflow/tensorflow:2.3.1-gpu

...

  • ไฟล์ Setup.py - ใช้สำหรับการดาวน์โหลด Data set

  • ไฟล์ MNIST.py - ใช้สำหรับทดสอบรัน Training

  • ไฟล์ submit.sh - ใช้สำหรับส่ง Job รันบนเครื่อง GPU

...

Code Block
#!/bin/bash
#SBATCH -p gpu                           # Specify partition [Compute/Memory/GPU]
#SBATCH -N 1 -c 16   			         # Specify number of nodes and processors per task
#SBATCH --gpus-per-node=4		         # Specify number of GPU per task
#SBATCH --ntasks-per-node=4		         # Specify tasks per node
#SBATCH -t 120:00:00                     # Specify maximum time limit (hour: minute: second)
#SBATCH -A ltxxxxxx               	     # Specify project name
#SBATCH -J JOBNAME               	     # Specify job name
module load Apptainer/1.1.6              # Load the Apptainer module
apptainer exec --nv -B $PWD:$PWD filetensorflow_2.3.1-gpu.sif python3 fileMNIST.py       # Run your program
Info
  • คำสั่ง --ntasks-per-node ใช้ในการระบุจำนวน task ต่อ 1 node (โดยปกติจะระบุให้ตรงกับจำนวน GPU ที่ต้องการใช้งาน)

  • คำสั่ง --gpus-per-node ใช้ในการระบุจำนวน GPU ต่อ 1 node (GPU 1 ตัว: --gpus-per-node=1, GPU 2 ตัว: --gpus-per-node=2, GPU 4 ตัว: --gpus-per-node=4

  • คำสั่ง -B $PWD:$PWD ใช้เพื่อระบุ Path ของไฟล์ Container และไฟล์สคริปต์ Python เป็น Path ที่ใช้ส่งงานของคุณไปยังระบบ Slurm ของ LANTA

  • คำสั่ง --nv ใช้สำหรับการเปิดใช้งาน GPU

การส่ง Job เข้ารันบน LANTA

  1. ดาวน์โหลด Data set โดยใช้คำสั่งต่อไปนี้

Code Block
ml Apptainer
apptainer exec tensorflow_2.3.1-gpu.sif python Setup.py
  1. จากนั้น ใช้คำสั่ง sbatch submit.sh เพื่อส่ง Job ของคุณเข้าระบบ Slurm ของ LANTA

Code Block
sbatch submit.sh