Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

This article will guide you to run a python script using Slurm script on a LANTA HPC system.

Table of Contents

Using Miniconda via Easybuild

Load Miniconda module

  1. Use the ml av Miniconda command to see which version of Miniconda is available on the LANTA HPC system.

  2. Use the ml Miniconda3/xx.xx.x command to load the Miniconda version that you want to use. If you don't specify a version, the default version (D) is loaded, which is Miniconda3/22.11.1-1.

Code Block
username@lanta:~> ml av Miniconda
---------------------- /lustrefs/disk/modules/easybuild/modules/all -----------------------
   Miniconda3/22.11.1-1

Use "module spider" to find all possible modules and extensions.
Use "module keyword key1 key2 ..." to search for all possible modules matching any of the "keys".
username@lanta:~> ml Miniconda3/22.11.1-1

Activate your environment

  1. Use the conda env list command to view a list of your environments.

  2. If you want to activate your environment such as TensorFlow-2.6.0, you can use the conda activate tensorflow-2.6.0 command.

...

describes how to execute a Python script on the LANTA HPC system using Miniconda. The following table of contents provides an overview of the article's material, allowing for quick identification of the most relevant sections.

Table of Contents

Slurm script example for running the Python script

Running on Compute node

Code Block
#!/bin/bash
#SBATCH -p compute                  # Specify partition [Compute/Memory/GPU]
#SBATCH -N 1 -c 128   			    # Specify number of nodes and processors per task
#SBATCH --ntasks-per-node=1		    # Specify tasks per node
#SBATCH -t 120:00:00                # Specify maximum time limit (hour: minute: second)
#SBATCH -A ltxxxxxx                 # Specify project name
#SBATCH -J JOBNAME                  # Specify job name

module load Mamba/23.11.0-0         # Load the conda module
conda activate tensorflow-2.12.1	# Activate your environment

python3 file.py                     # Run your program or executable /lustrefs/disk/modules/easybuild/software/Miniconda3/22.11.1-1
netcdf-py39code
Info

Full node: -c 128, Half node: -c 64, ¼ node: -c 32

Running on GPU node

Code Block
#!/bin/bash
#SBATCH -p gpu                      # Specify partition [Compute/lustrefs/disk/modules/easybuild/software/Miniconda3/22.11.1-1/envs/netcdf-py39
pytorch-1.11.0           /lustrefs/disk/modules/easybuild/software/Miniconda3/22.11.1-1/envs/pytorch-1.11.0
tensorflow-2.6.0         /lustrefs/disk/modules/easybuild/software/Miniconda3/22.11.1-1/envs/tensorflow-2.6.0
username@lanta:~> conda activate tensorflow-2.6.0
(tensorflow-2.6.0) username@lanta:~>

Creating an environment in the user’s home

Create an environment

Use the conda create -n myenv commands to create the conda environment with myenv name.

Code Block
username@lanta:~> conda create -n myenv
Collecting package metadata (current_repodata.json): done
Solving environment: done

## Package Plan ##

  environment location: /your directory/envs/myenv

Proceed ([y]/n)? y
...
username@lanta:~> 

Create an environment with a specific version of the packages

Code Block
username@lanta:~> conda create -n myenv python=3.9
username@lanta:~> conda create -n myenv python=3.9 scipy=0.17.3

Creating an environment in the project’s home

Specify a location for an environment

Code Block
username@lanta:~> conda create --prefix /your project directory/envs

Specify a location for an environment with a specific version of the packages

Code Block
username@lanta:~> conda create --prefix /your project directory/envs python=3.9

Activate your environment in the project’s home

Code Block
username@lanta:~> conda activate /your project directory/envs

Creating an environment from an environment.yml file

A simple environment.yml file

Code Block
name: test
dependencies:
  - python=3.9
  - numpy=1.23.1
  - pandas

Create the environment from the environment.yml file in the user’s home

Code Block
username@lanta:~> conda env create -f environment.yml

Create the environment from the environment.yml file in the project’s home

Code Block
username@lanta:~> conda env create -f environment.yml --prefix /your project directory/envsMemory/GPU]
#SBATCH -N 1 -c 16   			    # Specify number of nodes and processors per task
#SBATCH --gpus-per-task=1		    # Specify number of GPU per task
#SBATCH --ntasks-per-node=4		    # Specify tasks per node
#SBATCH -t 120:00:00                # Specify maximum time limit (hour: minute: second)
#SBATCH -A ltxxxxxx               	# Specify project name
#SBATCH -J JOBNAME               	# Specify job name

module load Mamba/23.11.0-0         # Load the conda module
conda activate tensorflow-2.12.1	# Activate your environment

python3 file.py                     # Run your program or executable code
Info

1 GPU card: --ntasks-per-node=1, 2 GPU cards: --ntasks-per-node=2, 4 GPU cards: --ntasks-per-node=4

Submit a job

Use the sbatch script.sh command to submit your job to the Slurm system.

Code Block
username@lanta:~> sbatch script.sh
Note

Before you use the sbatch script.sh command, you must ensure that your environment is disabled.

...

Related articles

Filter by label (Content by label)
showLabelsfalse
max5
spacescom.atlassian.confluence.content.render.xhtml.model.resource.identifiers.SpaceResourceIdentifier@48ae393
showSpacefalse
sortmodified
showSpacetypefalsepage
reversetrue
typelabelspagesingularity python container
cqllabel = in ( "python-vir-env" , "python-apptainer" , "env" , "jupyter" ) and space = currentSpace ( )labelssingularity python container