Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

...

Table of Contents

ขั้นตอนการติดตั้ง Amber20 สำหรับการใช้งานบน CPU

  1. Obtain Amber20 at http://ambermd.org and download source codes

  2. Upload and extract amber source codes at your project home director

    Code Block
    cd /tarafs/data/project/projxxxx  #change projxxxx to your project ID  
    tar xvfj AmberTools20.tar.bz2  
    tar xvfj Amber20.tar.bz2  
  3. Set the AMBERHOME home directory environment variable

    Code Block
    cd amber20_src
    export AMBERHOME=$PWD
  4. Load modules and prepare for AMBER20 installation

    Code Block
    module purge
    module load bzip2/1.0.8-GCCcore-8.3.0
    module load GCC/8.3.0
    module load XZ/5.2.4-GCCcore-8.3.0
  5. Go to the amber directory and execute the compilation script

    Code Block
    cd $AMBERHOME
    ./configure -noX11 gnu
  6. Install and test

    Code Block
    source ./amber.sh
    make install
    make test
  7. After the installation is successful, you can compile parallel (MPI) versions of Amber20 by load OpenMPI module

    Code Block
    module load OpenMPI/3.1.4-GCC-8.3.0
  8. Then, recompilation with MPI

    Code Block
    ./configure -mpi -noX11 gnu
    make install

...

การ compile Amber20 สำหรับการใช้งานบน GPU

หลังจากทำการ compile การตามขั้นตอนก่อนหน้าเรียบร้อยแล้ว ให้ทำการ complie สำหรับการใช้งานบนระบบ GPU ดังขั้นตอนต่อไปนี้

  1. Go to the AMBERHOME home directory environment variable

    Code Block
    cd /tarafs/data/project/projxxxx  #change projxxxx to your project ID  
    cd amber20_src
    export AMBERHOME=$PWD
  2. Load modules and prepare for AMBER20 installation

    Code Block
    module purge
    module load bzip2/1.0.8-GCCcore-8.3.0
    module load XZ/5.2.4-GCCcore-8.3.0
    module load gcccuda/2019b
    module load CUDA/10.1.243
  3. Go to the amber directory and execute the compilation script for the installation with cuda

    Code Block
    cd $AMBERHOME
    ./configure -noX11 -cuda gnu
    make install
  4. Testing

    Code Block
    make test.cuda_serial
  5. After the installation is successful, you can compile parallel (MPI) versions with cuda

    Code Block
    module load OpenMPI/3.1.4-gcccuda-2019b
    module load NCCL/2.4.8-gcccuda-2019b
    export NCCL_HOME=/tarafs/utils/modules/software/NCCL/2.4.8-gcccuda-2019b/
  6. Then, recompilation with MPI for GPU

    Code Block
    ./configure -noX11 -cuda -mpi -nccl gnu
    make install

Related

...

articles

Filter by label (Content by label)
showLabelsfalse
showSpacefalse
cqllabel in ( "amber" , "md_simulation" )
Page Properties
hiddentrue

...